Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion.
نویسندگان
چکیده
The thymus is seeded by very small numbers of progenitor cells that undergo massive proliferation before differentiation and rearrangement of TCR genes occurs. Various signals mediate proliferation and differentiation of these cells, including Wnt signals. Wnt signals induce the interaction of the cytoplasmic cofactor beta-catenin with nuclear T cell factor (TCF) transcription factors. We identified target genes of the Wnt/beta-catenin/TCF pathway in the most immature (CD4-CD8-CD34+) thymocytes using Affymetrix DNA microarrays in combination with three different functional assays for in vitro induction of Wnt signaling. A relatively small number (approximately 30) of genes changed expression, including several proliferation-inducing transcription factors such as c-fos and c-jun, protein phosphatases, and adhesion molecules, but no genes involved in differentiation to mature T cell stages. The adhesion molecules likely confine the proliferating immature thymocytes to the appropriate anatomical sites in the thymus. For several of these target genes, we validated that they are true Wnt/beta-catenin/TCF target genes using real-time quantitative PCR and reporter gene assays. The same core set of genes was repressed in Tcf-1-null mice, explaining the block in early thymocyte development in these mice. In conclusion, Wnt signals mediate proliferation and cell adhesion, but not differentiation of the immature thymic progenitor pool.
منابع مشابه
Identification of TMEM131L as a novel regulator of thymocyte proliferation in humans.
In this study, we identify transmembrane protein 131-like (TMEM131L) as a novel regulator of thymocyte proliferation and demonstrate that it corresponds to a not as yet reported inhibitor of Wnt signaling. Short hairpin RNA-mediated silencing of TMEM131L in human CD34(+) hematopoietic progenitors, which were then grafted in NOD-SCID/IL-2rγ(null) mice, resulted in both thymocyte hyperproliferati...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملO-29: Differences in The Transcriptional Profiles of Human Cumulus Cells Isolated From MI and MII Oocytes of Patients with Polycystic Ovary Syndrome
Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss....
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملCD34-expressing human thymocyte precursors proliferate in response to interleukin-7 but have lost myeloid differentiation potential.
CD34 is a marker for pluripotent stem cells also present on lineage-committed hematopoietic progenitors from bone marrow and a subpopulation of immature thymocytes. To characterize these early immature thymocytes, we have studied 24 pediatric thymus samples for CD34/7 expression. Three subpopulations could be defined from these T-cell receptor (TcR-) immature thymocytes: CD34+7++ (12.0 +/- 5.8)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 172 2 شماره
صفحات -
تاریخ انتشار 2004